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Abstract

New methods of continuous glucose monitoring (CGM) data analysis are emerging that are valuable for interpreting CGM
patterns and underlying metabolic physiology. These new methods use functional data analysis and artificial intelligence (Al),
including machine learning (ML). Compared to traditional metrics for evaluating CGM tracing results (CGM Data Analysis
1.0), these new methods, which we refer to as CGM Data Analysis 2.0, can provide a more detailed understanding of glucose
fluctuations and trends and enable more personalized and effective diabetes management strategies once translated into
practical clinical solutions.
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Introduction

Continuous glucose monitoring (CGM) has transformed dia-
betes management and is now considered a standard of care
for insulin-treated diabetes. Recently, interest in CGM has
extended into populations with and at risk of non—insulin-
treated diabetes, and in 2024, three over-the-counter CGM
devices were approved in the United States.! As these devices
become more ubiquitous, a major challenge will be to make
sense of the 1440 interstitial glucose readings that can be col-
lected daily.

CGM data interpretation currently employs four main
methodologies, each with distinct approaches and applica-
tions. These four analytical frameworks include: (1) tradi-
tional summary statistics, (2) Functional Data Analysis, (3)
artificial intelligence (Al)/machine learning (ML), and (4)
foundation models in Al. The first two of these methods use
statistics to identify patterns of glycemia and are known as
pattern analysis methods; the latter two methods involve Al.
While traditional summary statistics simplify data into
aggregate metrics, Functional Data Analysis uses advanced
statistical methods to analyze temporal dynamics that can
reveal more detailed physiological patterns.

Until recently, traditional summary statistics have been the
predominant approach to analyzing CGM data. These statis-
tics are simple to understand but can oversimplify complex
patterns. Simple summary statistics for CGM tracings can be
considered to be “CGM Data Analysis 1.0.” More recently,
new Functional Data Analysis methods have been applied to
identity patterns,? and Al models® (which include ML meth-
ods)* have been developed for risk stratification. To identify
trends, excursions, and variability in glucose levels, these
new methods have the potential to provide additional insights
beyond traditional pattern analyses of the three panels of an
ambulatory glucose profile (AGP), which presents (1) sum-
mary glucose statistics and targets, (2) the ambulatory profile,
and (3) daily glucose profiles.> Advanced analytics using
Functional Data Analysis for pattern analysis and emerging
Al-based and ML-based interpretation methods can be con-
sidered to be “CGM Data Analysis 2.0.” The advantage for
clinicians involved in diabetes care will be access to more
nuanced patterns of glycemia, which are foundational for per-
sonalizing diabetes management. This article discusses the
features of CGM Data Analysis 1.0 and 2.0 and explains the
progression from emphasis on traditional statistics to
Functional Data Analysis to Al- and ML-based methods for
interpreting CGM data patterns.

Why We Are Moving Beyond
Traditional Statistical Methods

Traditional pattern analysis of the CGM signal focuses on
simple-to-calculate summary characteristics over 10 to 14
days for assessing glycemia or quality of glycemic control
and is used widely by clinicians. These metrics include the
percentages of time spent in five glycemic ranges, the Glucose

Management Indicator (which is proportional to the mean
glucose concentration), and the coefficient of variation (which
is a measurement of glycemic variability). These metrics tend
to oversimplify dynamic glucose fluctuations and lack granu-
larity in capturing complex temporal patterns. In contrast,
Functional Data Analysis,? Al,* and ML® are complex frame-
works that use the entire CGM time series. Functional Data
Analysis, compared to traditional statistical analysis, provides
additional insights into the temporal structure of glycemic
variability and offers greater emphasis on deconstructing the
amount and timing of recurring variations during the entire
wear period.? As such, Functional Data Analysis goes beyond
traditional statistics to (1) present a more comprehensive
analysis of glucose data, whereby complex metrics may sup-
plement traditional glucose metrics, (2) allow sophisticated
time-dependent observations (such as different patterns on
weekdays vs weekends), and (3) enable identification of phe-
notypes or subphenotypes with distinct postprandial or noc-
turnal glycemic patterns. ML and Al methods are able to both
analyze complex glucose patterns and combine the analysis
with personalized decision-making frameworks. ML algo-
rithms have been used to analyze CGM data patterns to pre-
dict metabolic subphenotypes’ and predict future glycemic
trends, whereas additional Al analyses can integrate these
predictions with other health parameters besides CGMs for
context, in order to automate therapeutic interventions, such
as closed-loop control.3° Although no Al-powered automated
insulin delivery (AID) system is currently on the market, such
a system has been successfully tested.'® This approach to
CGM data analysis also allows the algorithm to learn from
the person living with diabetes and will reduce computational
demands.!! Table 1 compares key features for pattern analysis
methods of CGM data using traditional statistical methods,
Functional Data Analysis, ML, and Al

Traditional Statistical Methods for
Continuous Glucose Monitoring
Pattern Analysis

Traditional statistical methods for CGM pattern analysis
focus on summarizing individual glycemic profiles, assess-
ing variability, and identifying clinical events. These
approaches prioritize aggregated metrics and risk indices but
do not provide insights into temporal trends. Traditional sta-
tistics focus on summary metrics such as mean glycemia,
percentage of time in various glycemic ranges, and the
amount of variability of the entire series. Seven traditional
statistics are presented in the AGP.? Several composite met-
rics have been derived from these traditional statistics,
including the Glycemia Risk Index,'* the Low/High Blood
Glucose Indices (LBGI/HBGI),'>!¢ and the glucose penta-
gon.'” Overall, traditional statistics emphasize summaries
and risk scores that are easily understood by clinicians but do
not account for short-term glucose excursions and dynamic
patterns, which could provide a more detailed picture of



Klonoff et al

Table I. A Comparison of Key Features for Pattern Analysis Methods of CGM Data Using Traditional Statistical Methods, Functional
Data Analysis, ML, and Al.

Traditional statistical

Functional data pattern

Machine learning pattern

Artificial intelligence pattern

Methods pattern analysis analysis analysis analysis
Reference Scheiner et al'2 Gecili et al® Jacobs et al® and Shomali et al'3
Metwally et al’
Approach Visual, summary Statistical, models entire Predictive modeling using Integrates machine learning,
statistics time series algorithms and glucose deep learning, and advanced
time series algorithms
Data Used Aggregated, summary, Each CGM trajectory Large CGM data sets Massive, heterogeneous data
or graphical is a random function sets (CGM, EHR, images,
lifestyle, genomics)
Purpose To identify obvious To quantify, compare, and  To predict future glucose To predict risk, classify
trends/patterns model complex dynamics levels and classify states (eg, subtypes, and optimize
metabolic subphenotypes) therapy
Main Users  Clinicians (practical use)  Statisticians, researchers Data scientists, AlI/ML digital Researchers, health systems,
health researchers digital therapeutics
developers
Depth of Moderate (can identify High (treats glucose High (can uncover Very high (enables real-time
Insight trends and outliers) trajectories as non-linear, complex, adaptive interventions)
mathematical functions hidden patterns)
rather than discrete
measurements)
Examples AGP, time-in-range, Functional principal Clinically meaningful Al-powered CGM or Al-
mean, SD, GMI, GRI components, patterns from complex powered closed-loop
glucodensity CGM data insulin delivery, image-based
complication detection
Limitations ~ May miss subtle/intricate ~Requires statistical Requires a large data set Data privacy, bias, transparency,

patterns

expertise, more complex

to avoid overfitting beyond
the used data set

regulatory hurdles, and a need
for extensive validation

Abbreviations: AGP, ambulatory glucose profile; Al, artificial intelligence; CGM, continuous glucose monitor; EHR, electronic health record; GMI, glucose
management indicator; GRI, glycemia risk index; ML, machine learning; SD, standard deviation.

glycemic variability than traditional summary statistics.'®
Also, these traditional summary statistics for pattern analysis
are prone to distortion from missing data or irregularly
spaced measurements due to sensor or connectivity problems
and can fail to capture nuanced phenotypes. A review of
ambulatory profiles and daily glucose profiles may some-
times identify day and night differences and times when
there is glucose variability, but many clinicians are too time-
limited to perform this type of pattern review. Traditional
analysis of dense time-series CGM data can oversimplify
patterns and has been increasingly supplemented with or
supplanted by advanced statistical techniques known as
Functional Data Analysis.> These complex statistics, com-
pared to traditional statistics, can more accurately classify
nuanced patterns, account for glucose dynamics over time,
identify phenotypes, and facilitate personalization.

When Traditional Statistical

Methods May Not Be Sufficient For
Pattern Analysis

Three physiological rationales support the use of Functional

Data Analysis, ML, and Al, compared to traditional statisti-
cal methods, to provide more granular and mechanistic

insights for analysis of CGM patterns. First, the shape of the
glucose curve reflects underlying pathophysiology. Glucose
dynamics, and especially postprandial glucose responses,
depend on numerous physiological parameters, including
insulin sensitivity and beta-cell function. Therefore, although
two daily glucose curves at first glance can have a similar
appearance, their differences may represent very different
underlying pathophysiology, especially when considering
also the use of CGM in pre-diabetes and type 2 diabetes
(T2D)." Functional Data Analysis outperforms traditional
methods in capturing glucose patterns by modeling CGM
trajectories as dynamic processes rather than static summa-
ries.?’ Second, the shape of the glucose curve also can reflect
the patient’s behaviors and medication regimens. For exam-
ple, pattern analysis of postprandial glucose curves could
reveal times when patients exercise, miss boluses of insulin,
mistime boluses, alter insulin sensitivity by exercising, or
incorrectly identify the macronutrient content of their food
choices.?! The Abbott Libreview app contains an example of
data pattern analysis by including a section called “Mealtime
Patterns” that displays overall trends in glucose levels before
and after meals, broken down by time of day: morning, mid-
day, evening, and night.?> However, this type of display does
not meet the definition of Functional Data Analysis because
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it does not employ advanced statistical modeling of entire
data trajectories as functions.> Understanding patterns and
amounts of glycemic variability, risk of hypoglycemia and
hyperglycemia, and factors contributing to variability allows
identification of periods of increased risk to facilitate proac-
tive management. Third, recognizing specific patterns in glu-
cose levels, rather than the standard overall percentage of
time within the target range or even a composite metric, can
allow clinicians to identify the underlying root cause and
help them to adjust treatments based on identifying times of
day when glucose levels are likely to be out of personal tar-
get ranges.?

Functional Data Analysis for
Continuous Glucose Monitoring
Pattern Recognition

Functional Data Analysis leverages the full time-series struc-
ture and is much more powerful than traditional statistical
pattern analysis, especially when the goal is understanding
the full temporal dynamics of glucose fluctuations rather
than relying on isolated summary statistics or discrete time
points. This approach treats CGM data as dynamic curves
rather than discrete points, allowing for insights into glucose
patterns.® Five indications for Functional Data Analysis
include (1) recognizing longitudinal or repeated measures
for when CGM data is collected over multiple days or weeks
to analyze the patterns and variability both within and
between individuals over time, (2) phenotyping and sub-
group identification to identify distinct glycemic phenotypes
or subgroups based on the shape and variability of glucose
curves, which can help tailor interventions for patients at
higher risk for complications, (3) assessing the impact of
meals or interventions by reviewing the entire postprandial
glucose trajectory, rather than just a single outcome, (4) qual-
ifying inter- and intra-day reproducibility of glucose patterns
to test a CGM device’s precision, or (5) assessing glycemic
variability of an individual as a risk factor for complications
as part of a precision medicine approach. Thus, Functional
Data Analysis compared to traditional statistics is better
suited for capturing dynamic glucose patterns, handling
complex data structures, and making time-dependent predic-
tions. Functional Data Analysis improves CGM prediction
accuracy by transforming raw glucose traces into functional
objects that preserve temporal dependencies, dynamic trends,
and individual heterogeneity.

An example of Functional Data Analysis is the calculation
of glucodensity, a statistical approach for pattern analysis of
CGM data, where the entire distribution of glucose values
over time for an individual is represented as a probability
density function.?%** Rather than focusing on summary sta-
tistics (such as mean glucose or time in range), with glu-
codensity the range intervals simultaneously shrink in width
so that the new profile measures the proportion of time each
patient spends at each specific glucose concentration rather
than the amount of time spent within a wide range of

glycemia. This method characterizes the full spectrum and
variability of glucose concentrations, capturing both central
tendency and fluctuations throughout the monitoring
period.”® A set of data analyzed with glucodensities is pre-
sented in Figure 1.

A fundamentally different type of ML pattern recognition
was used by Kovatchev and colleagues to add virtual CGM
data to the Diabetes Control and Complications Trial (DCCT)
results.?® In this study, the patterns of all 1400 participants in
the DCCT over ten years using their episodic hemoglobin
A, readings and capillary glucose profiles were used to fill
the gaps with CGM data derived from the previously identi-
fied CGM motifs.?” This study is an example of glucose pat-
tern recognition for a different purpose—to upsample the
data density. An ML-based method for defining six distinct
CGM fluctuation patterns of glycemic variability and the
durations in these patterns was reported by Chan and col-
leagues. These patterns described variability better than tra-
ditional statistical methods.?

A modal day plot (also known as a 14-day glucose pattern
report) is a visualization tool used with Functional Data
Analysis, for longitudinal or repeated-measures data.”
Figure 2 presents an example of this type of plot. Although
this type of plot is not a traditional statistical summary, it is
often used in conjunction both with traditional statistics to
inform statistical modeling and for Functional Data Analysis
to visualize functional curve-based data.’® A heat map can be
used to present multiple stacked subjects’ CGM data across
time using color gradients.’® This plot displays the average
hourly glucose concentration over the study days corre-
sponding to that hour for that subject. With a heat map, one
can observe differences, both between subjects and within
subjects, as indicated by different colors in the heat map. A
heat map is presented in Figure 3. This type of plot, however,
does not demonstrate improving or worsening glycemic
trends over time for the individual, because the plots demon-
strate only glycemic averages for a given time of day and are
considered a bridging tool between traditional statistics and
Functional Data Analysis techniques.!

Artificial Intelligence and Machine
Learning for Continuous Glucose
Monitoring Pattern Analysis

There has been recent excitement about applying Al to ana-
lyze and interpret CGM data. Al encompasses a breadth of
methodologies, from ML models that can learn characteris-
tics and relationships in data to autonomous, generative sys-
tems that can independently analyze data. Several ML
architectures, including recurrent neural networks, convolu-
tional neural networks, and transformers, are capable of
learning temporal patterns in time series data, similar to
Functional Data Analysis.

However, Al offers additional capabilities as compared to
Functional Data Analysis. For example, Al models can pre-
dict clinical outcomes and associate CGM data with clinical
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Figure |. Estimated and clustered glucodensities (left three panels) and the corresponding cumulative distribution functions (right
three panels). Three clusters are identified: red (six subjects), with the highest average and most variable levels of blood glucose; blue
(I'l subjects), with the somewhat better glycemic control; and green (I3 subjects), with the lowest average and least variable levels of
blood glucose. Source: Reproduced from Cui et al?® under the CC-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).
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Figure 2. A modal day plot (also known as a |4-day glucose pattern report) of a set of CGM tracings. The dark line is the mean
glucose at any given time. Source: This figure is courtesy of Amiad Fredman.
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Figure 3. A heat map of a set of CGM tracings from 30 subjects. For any given subject, at any given time point in the 0- to 24-hour
range, the average glucose level over study days corresponding to that time point for that subject is displayed. Source: Reproduced from
Cui et al?® under the CC-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).

characteristics for tasks including risk stratification, sub-
group identification, and decision support.* ML models can
use either raw CGM data, extract information from algo-
rithms developed through mathematical modeling strategies,
or leverage existing pattern recognition techniques, includ-
ing Functional Data Analysis, to gain clinical insights such
as identifying clinically significant events (including
impending hypoglycemia), assigning severity scores, and
linking CGM characteristics to clinical phenotypes.?>33

Al also encompasses autonomous, intelligent systems that
can be used to enhance the interaction between professionals
and people with diabetes using CGM data. This includes
interfaces that incorporate narrative summaries of data and
intelligent insights personalized to an individual’s data.

Al models can also employ predictive algorithms for real-
time decision support. These models are used for short-term
predictions, as part of closed-loop systems, and for risk strat-
ification. ML is primarily used to learn from CGM data to
predict or classify glucose patterns, with a focus on enhanc-
ing risk stratification, subtype identification, root cause anal-
ysis, and prediction of patterns indicating adverse glycemic
events.>* Input to ML algorithms for classification or predic-
tion purposes can be specified to include episodes of hypo-
glycemia occurring during particular conditions (eg, exercise
or hemodialysis). The most advanced CGM interpretation
systems today leverage both ML for prediction and Al for

explanation, automation, and user interaction. As these two
computational methods become combined, there will be the
potential for optimizing diabetes management.

While predictive performance continues to improve,
future clinical acceptance of Al-enhanced CGM tools will, of
course, depend on their explainability and auditability.
Clinicians need to be able to understand why an algorithm
flagged a pattern or made a recommendation, especially in
safety-critical scenarios such as insulin dosing. Explainable
Al methods, such as attention mapping in deep learning
models or SHAP (SHapley Additive exPlanations) values®
(which are metrics used to explain the output of machine
learning models by quantifying the contribution of each fea-
ture to a specific prediction) in ensemble approaches, can
support transparency and trust in clinical decision-making.
However, it will take significant experimentation to arrive at
the best techniques for verification and validation, so moving
from “ideation” to active trials and implementation in real-
world scenarios is crucial.

Another emerging challenge is that of model drift and
decay—when changes in physiology, lifestyle, or medication
regimens reduce model accuracy over time. Techniques such
as automated drift detection, performance monitoring, and
continuous learning pipelines will be needed to maintain
robustness in real-world deployments. In addition, Al tools
must account for edge-case populations who may fall outside
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the dominant training distributions, such as those with dis-
rupted circadian rhythms, polypharmacy, or comorbidities.
Like explainability and auditing, model drift and decay detec-
tion will take substantial experimentation. Putting Al into real-
world use is crucial so that reinforcement learning with human
feedback (RLHF) can get started. Federated personalization
and meta-learning approaches may allow models to rapidly
adapt to these complex cases with minimal additional data.

Below we highlight examples of the use of Al and ML to
analyze glycemic patterns, including: (1) Pattern Recognition
and Event Classification Models, (2) Creation of Glucotypes,
(3) ML to predict metabolic subphenotypes, (4) Large
Language Models (LLMs) for CGM Data Summarization,
(5) Examples of Commercial AI-Enhanced CGM Systems,
(6) CGM foundation models, and (7) ML models to predict
clinical outcomes from CGM.

Pattern Recognition and Event
Classification Models

Pattern recognition and event classification models using an
automated Al-driven system specifically designed to detect
and classify clinically significant CGM patterns (CGM
events) use algorithms to identify these events based on sig-
nal shape, temporal features, and glucose categories at the
start and end of each event. Such a system has been validated
against expert clinician assessments and demonstrated high
accuracy in event detection and classification.!> Machine
learning for assessing glycemic status and risk prediction has
been used with random forest and support vector machine
models to predict nocturnal hypoglycemia.*® Long short-
term memory (LSTM) networks and convolutional neural
networks (CNNs) have also been applied to CGM time-series
data for hypoglycemia prediction by leveraging the temporal
dynamics of glucose fluctuations to accurately predict
adverse events, guide clinical interventions,’” and identify
underlying root causes.

Glucotypes

Al algorithms using pattern analysis emphasizing CGM data
glycemic variability have been used to identify subtypes of
prediabetes and T2D. By defining three patterns of glycemic
responses to standardized meals in people without known
T2D, healthy people with no history of diabetes and normal
static tests of glycemia (such as fasting plasma glucose,
2-hour plasma glucose following an oral glucose tolerance
test [OGTT], or hemoglobin A, concentration) can be cate-
gorized into one of three patterns of glucose metabolism to
create “glucotypes.” Individuals with aberrant glucose
metabolism, including even true T2D, can be identified with
this approach”*, Other investigators have worked on iden-
tifying glucotypes of people with diabetes by clustering
patients’ CGM data. Investigators have described CGM trac-
ings by the subgroup with which they best fall and have

shown that this approach can delineate individuals with dis-
tinct statistical features and phenotypes.?’”*!*# A classifica-
tion process for three glucotypes is presented in Figure 4.

Machine Learning-Based Analysis of
Glucose Time Series for Predicting
Metabolic Subphentoypes

The ML-based analysis of glucose time series for predicting
metabolic subphenotypes has been used to directly predict
metabolic subphenotypes, based on beta-cell function and
degree of insulin resistance.” Characterizing insulin resis-
tance and beta-cell function is of great interest, as it could
allow for more targeted treatments. The gold-standard test
for insulin resistance is the hyperinsulinemic euglycemic
clamp,* and for beta-cell function is the disposition index.*
Both of these tests are performed in research facilities only,
are expensive, and are time-consuming. In recent work, ML
models have been trained on glucose time series from CGM
following at-home OGTT to predict muscle insulin resis-
tance and beta-cell function, which were measured using
gold-standard tests.” This process is illustrated in Figure 5.
At-home identification of metabolic subphenotypes using a
CGM therefore has the potential to facilitate risk stratifica-
tion of individuals with early glucose dysregulation. It was
shown that insulin resistance can be predicted at home with
CGM and standardized meals,* lifestyle factors,*” or via
wearables and routine blood biomarkers.*®

Large Language Models for
Continuous Glucose Monitoring
Data Summarization

Large language models can analyze raw CGM data, generate
narrative summaries similar to clinician-written reports, and
potentially assist in clinical decision making.** Healey and
colleagues evaluated the ability of an LLM, GPT-4, to com-
pute quantitative metrics specific to diabetes found in an
AGP as defined by an international consensus report™ and an
American Diabetes Association Standards of Care in
Diabetes report.’! Qualitative summaries of the data in their
AGP reports were derived from an article on interpreting an
AGP report.”? They evaluated the accuracy, completeness,
safety, and suitability of qualitative descriptions produced by
GPT-4, as assessed by two clinician graders. The LLM pro-
vided qualitative descriptions of glycemic patterns, hypogly-
cemia, and hyperglycemia events. An evaluation procedure
for a single case of using GPT-4 to summarize an AGP is
presented in Figure 6. The LLM-generated analyses demon-
strated high accuracy and safety, as confirmed by the clini-
cians. However, the study also identified occasional errors in
the clinical conclusions produced by the LLMs, which could
potentially result in inappropriate treatment decisions.’
While the findings underscore the promise of Al-assisted
CGM pattern analysis in enhancing clinical care and
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Abbreviation: CGM, continuous glucose monitoring.

clinician efficiency, they also highlight the critical need for
further research to refine LLM prompts and integrate human
feedback into model training, ensuring greater reliability and
clinical applicability.™*

Commercial Artificial
Intelligence-Enhanced Continuous
Glucose Monitoring Systems

Stelo by Dexcom, the first over-the-counter glucose biosen-
sor cleared by the United States Food and Drug Administration,
uses generative Al-enabled technology to produce weekly
narrative insights in contextually relevant text. The Stelo app
provides personalized tips, recommendations, and education
related to diet, exercise, and sleep, based on not only glucose
data but also meal logs and other wearable data.>> A commer-
cial Al-powered CGM system has also been developed by
Roche Diabetes Care. This real-time CGM Diabetes Tracker

under the CC-BY-4.0 license (https://creativecommons.org/

provides actionable alerts by incorporating Al algorithms to
predict glucose highs and lows as well as inform the user of
their risk of developing hypoglycemia overnight with their
Accu-Chek SmartGuide and SmartGuide Predict app.>® The
app is powered by three ML models, including a 120-minute
glucose forecast, a 30-minute low glucose detection, and a
night-time low glucose prediction for bedtime interventions.®’
This product is available in some European countries but not
in the United States. Other CGMs employ Al for automation
and prediction but do not provide user-facing, generative
Al-driven insights at this time.

Continuous Glucose Monitoring
Foundation Models
A foundation model of CGM structures for pattern analysis

refers to a large, pretrained ML model that learns generaliz-
able representations from CGM data for diverse downstream
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Figure 5. Study design of the validation cohort and at-home OGTT test via CGM to predict muscle IR and B-cell function. Participants
underwent gold-standard testing at the research unit for insulin resistance (SSPG test) and B-cell function (16-point OGTT with
C-peptide deconvolution adjusted for SSPG and expressed as DI), as well as two OGTTs administered at home under standardized
conditions during which glucose patterns were captured by a CGM within a single 10-day session (DexCom Gé pro). Source:
Reproduced from Metwally et al® under the CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).

Abbreviations: CGM, continuous glucose monitor; CTRU, clinical translational research unit; DI, disposition index; IR, insulin resistance; IS, insulin
sensitivity; ML, machine learning; N, number of subjects; SSPG, steady-state plasma glucose.
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Figure 6. Evaluation procedure for a single case of using GPT-4 to summarize an AGP. Source: Figure reproduced from Healey et al*
under the CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).

predictive and analytic tasks.*® Foundation models capture
the underlying dynamics and patterns in the data and then
allow building applications, such as diagnosis or risk assess-
ment. Lu and colleagues recently published a CGM founda-
tion model based on a deep learning transformer architecture,
that was pretrained on vast amounts of CGM data using self-
supervised learning tasks.* Gluformer is another example
of a foundation model of CGM data.®® However, this model
is trained primarily on data in the non-diabetic healthy state
and is therefore useful only for detecting deviations from a
healthy state, i.e., it can detect an increased risk of diabetes.

Machine Learning to Predict
Clinical Outcomes from
Continuous Glucose Monitoring

There is emerging interest in using ML to predict clinical
events and outcomes from CGM data. These approaches
have been enabled by comprehensive datasets that contain
CGM data along with clinical outcomes. This predictive
approach was used in the Glucose Levels Across Maternity
(GLAM) study to link CGM data with risks of maternal and
select perinatal complications.®! Medication adherence has
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been determined to be feasible through ML-based pattern anal-
ysis of simulated CGM data.®? Subtyping patients with T2DM
using CGM data may help identify high-risk patients for micro-
vascular complications,® including diabetic retinopathy**®*
and albuminuria.*> However, these new approaches are at early
stages of implementation and require further studies to deter-
mine their feasibility and acceptability for use by profession-
als and people with diabetes. In addition, the potential
benefits related to diabetes prevention and reducing the risk
of the serious complications associated with diabetes remain
to be determined.

Conclusions

As Functional Data Analysis-, Al- and ML-enabled applica-
tions for CGM for pattern analysis become more available
and more powerful, we expect to see greater insights into the
users’ metabolism and behavior, which will assist clinicians
to make more targeted treatment decisions.®® For example,
special consideration must be given to populations with
irregular circadian rhythms (eg, shift workers), polyphar-
macy, or comorbidities that alter metabolic rhythms. These
“edge-case” users may not be well-represented in training
data sets, and their glucose patterns may challenge standard
algorithms.

As primary care physicians now provide the majority of
diabetes care, they are likely to be significant beneficiaries
of tools that can translate CGM pattern insights into natural
language interpretations. Similarly, and from the perspec-
tive of people living with diabetes, personalized insights
from more detailed explanations of CGM profiles are very
likely to result in improvements in their self-management.
Furthermore, for all clinicians, the burden of identifying com-
plex patterns and selecting treatments based on these patterns
could be reduced by the same pattern analysis 2.0 tools by
adding decision support. Researchers will now need to gen-
erate practical clinical advice and solutions from their pow-
erful Functional Data Analysis, Al, and ML tools to enable
clinicians to move from traditional CGM Pattern Analysis
1.0 to what we are calling CGM Data Analysis 2.0. For
example, LLMs could also convert pattern detection into
natural language descriptions of recommended treatments to
be reviewed and potentially accepted by clinicians as text
for clinical documents, which could significantly reduce
their workload.

To bring CGM Data Analysis 2.0 to mainstream diabetes
care, either CGM manufacturers or software developers
will be expected to generate new types of reports. These
reports will supplement or replace current reports that are
based on summary statistics that were conceived of before
artificial intelligence analysis became available to analyze
patterns. Furthermore, as new analysis technology becomes
widely deployed, new consensus guidelines and clinician
training will be needed to bring these analyses into the
workflow.

Clinicians will soon routinely receive new non-traditional
forms of CGM analyses because traditional metrics (CGM
Pattern Analysis 1.0) will gradually be replaced by Functional
Data Analysis-, Al-, and ML-based reports. These emerging
methods for analysis of CGM patterns (CGM Pattern
Analysis 2.0) will identify patterns, define the quality of gly-
cemia, and enable truly personalized treatments.

Abbreviations
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