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Abstract
New methods of continuous glucose monitoring (CGM) data analysis are emerging that are valuable for interpreting CGM 
patterns and underlying metabolic physiology. These new methods use functional data analysis and artificial intelligence (AI), 
including machine learning (ML). Compared to traditional metrics for evaluating CGM tracing results (CGM Data Analysis 
1.0), these new methods, which we refer to as CGM Data Analysis 2.0, can provide a more detailed understanding of glucose 
fluctuations and trends and enable more personalized and effective diabetes management strategies once translated into 
practical clinical solutions.
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Introduction

Continuous glucose monitoring (CGM) has transformed dia-
betes management and is now considered a standard of care 
for insulin-treated diabetes. Recently, interest in CGM has 
extended into populations with and at risk of non–insulin-
treated diabetes, and in 2024, three over-the-counter CGM 
devices were approved in the United States.1 As these devices 
become more ubiquitous, a major challenge will be to make 
sense of the 1440 interstitial glucose readings that can be col-
lected daily.

CGM data interpretation currently employs four main 
methodologies, each with distinct approaches and applica-
tions. These four analytical frameworks include: (1) tradi-
tional summary statistics, (2) Functional Data Analysis, (3) 
artificial intelligence (AI)/machine learning (ML), and (4) 
foundation models in AI. The first two of these methods use 
statistics to identify patterns of glycemia and are known as 
pattern analysis methods; the latter two methods involve AI. 
While traditional summary statistics simplify data into 
aggregate metrics, Functional Data Analysis uses advanced 
statistical methods to analyze temporal dynamics that can 
reveal more detailed physiological patterns.

Until recently, traditional summary statistics have been the 
predominant approach to analyzing CGM data. These statis-
tics are simple to understand but can oversimplify complex 
patterns. Simple summary statistics for CGM tracings can be 
considered to be “CGM Data Analysis 1.0.” More recently, 
new Functional Data Analysis methods have been applied to 
identity patterns,2 and AI models3 (which include ML meth-
ods)4 have been developed for risk stratification. To identify 
trends, excursions, and variability in glucose levels, these 
new methods have the potential to provide additional insights 
beyond traditional pattern analyses of the three panels of an 
ambulatory glucose profile (AGP), which presents (1) sum-
mary glucose statistics and targets, (2) the ambulatory profile, 
and (3) daily glucose profiles.5 Advanced analytics using 
Functional Data Analysis for pattern analysis and emerging 
AI-based and ML-based interpretation methods can be con-
sidered to be “CGM Data Analysis 2.0.” The advantage for 
clinicians involved in diabetes care will be access to more 
nuanced patterns of glycemia, which are foundational for per-
sonalizing diabetes management. This article discusses the 
features of CGM Data Analysis 1.0 and 2.0 and explains the 
progression from emphasis on traditional statistics to 
Functional Data Analysis to AI- and ML-based methods for 
interpreting CGM data patterns.

Why We Are Moving Beyond 
Traditional Statistical Methods

Traditional pattern analysis of the CGM signal focuses on 
simple-to-calculate summary characteristics over 10 to 14 
days for assessing glycemia or quality of glycemic control 
and is used widely by clinicians. These metrics include the 
percentages of time spent in five glycemic ranges, the Glucose 

Management Indicator (which is proportional to the mean 
glucose concentration), and the coefficient of variation (which 
is a measurement of glycemic variability). These metrics tend 
to oversimplify dynamic glucose fluctuations and lack granu-
larity in capturing complex temporal patterns. In contrast, 
Functional Data Analysis,2 AI,3 and ML6 are complex frame-
works that use the entire CGM time series. Functional Data 
Analysis, compared to traditional statistical analysis, provides 
additional insights into the temporal structure of glycemic 
variability and offers greater emphasis on deconstructing the 
amount and timing of recurring variations during the entire 
wear period.2 As such, Functional Data Analysis goes beyond 
traditional statistics to (1) present a more comprehensive 
analysis of glucose data, whereby complex metrics may sup-
plement traditional glucose metrics, (2) allow sophisticated 
time-dependent observations (such as different patterns on 
weekdays vs weekends), and (3) enable identification of phe-
notypes or subphenotypes with distinct postprandial or noc-
turnal glycemic patterns. ML and AI methods are able to both 
analyze complex glucose patterns and combine the analysis 
with personalized decision-making frameworks. ML algo-
rithms have been used to analyze CGM data patterns to pre-
dict metabolic subphenotypes7 and predict future glycemic 
trends, whereas additional AI analyses can integrate these 
predictions with other health parameters besides CGMs for 
context, in order to automate therapeutic interventions, such 
as closed-loop control.8,9 Although no AI-powered automated 
insulin delivery (AID) system is currently on the market, such 
a system has been successfully tested.10 This approach to 
CGM data analysis also allows the algorithm to learn from 
the person living with diabetes and will reduce computational 
demands.11 Table 1 compares key features for pattern analysis 
methods of CGM data using traditional statistical methods, 
Functional Data Analysis, ML, and AI.

Traditional Statistical Methods for 
Continuous Glucose Monitoring 
Pattern Analysis

Traditional statistical methods for CGM pattern analysis 
focus on summarizing individual glycemic profiles, assess-
ing variability, and identifying clinical events. These 
approaches prioritize aggregated metrics and risk indices but 
do not provide insights into temporal trends. Traditional sta-
tistics focus on summary metrics such as mean glycemia, 
percentage of time in various glycemic ranges, and the 
amount of variability of the entire series. Seven traditional 
statistics are presented in the AGP.2 Several composite met-
rics have been derived from these traditional statistics, 
including the Glycemia Risk Index,14 the Low/High Blood 
Glucose Indices (LBGI/HBGI),15,16 and the glucose penta-
gon.17 Overall, traditional statistics emphasize summaries 
and risk scores that are easily understood by clinicians but do 
not account for short-term glucose excursions and dynamic 
patterns, which could provide a more detailed picture of 
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glycemic variability than traditional summary statistics.18 
Also, these traditional summary statistics for pattern analysis 
are prone to distortion from missing data or irregularly 
spaced measurements due to sensor or connectivity problems 
and can fail to capture nuanced phenotypes. A review of 
ambulatory profiles and daily glucose profiles may some-
times identify day and night differences and times when 
there is glucose variability, but many clinicians are too time-
limited to perform this type of pattern review. Traditional 
analysis of dense time-series CGM data can oversimplify 
patterns and has been increasingly supplemented with or 
supplanted by advanced statistical techniques known as 
Functional Data Analysis.3 These complex statistics, com-
pared to traditional statistics, can more accurately classify 
nuanced patterns, account for glucose dynamics over time, 
identify phenotypes, and facilitate personalization.

When Traditional Statistical  
Methods May Not Be Sufficient For  
Pattern Analysis

Three physiological rationales support the use of Functional 
Data Analysis, ML, and AI, compared to traditional statisti-
cal methods, to provide more granular and mechanistic 

insights for analysis of CGM patterns. First, the shape of the 
glucose curve reflects underlying pathophysiology. Glucose 
dynamics, and especially postprandial glucose responses, 
depend on numerous physiological parameters, including 
insulin sensitivity and beta-cell function. Therefore, although 
two daily glucose curves at first glance can have a similar 
appearance, their differences may represent very different 
underlying pathophysiology, especially when considering 
also the use of CGM in pre-diabetes and type 2 diabetes 
(T2D).19 Functional Data Analysis outperforms traditional 
methods in capturing glucose patterns by modeling CGM 
trajectories as dynamic processes rather than static summa-
ries.20 Second, the shape of the glucose curve also can reflect 
the patient’s behaviors and medication regimens. For exam-
ple, pattern analysis of postprandial glucose curves could 
reveal times when patients exercise, miss boluses of insulin, 
mistime boluses, alter insulin sensitivity by exercising, or 
incorrectly identify the macronutrient content of their food 
choices.21 The Abbott Libreview app contains an example of 
data pattern analysis by including a section called “Mealtime 
Patterns” that displays overall trends in glucose levels before 
and after meals, broken down by time of day: morning, mid-
day, evening, and night.22 However, this type of display does 
not meet the definition of Functional Data Analysis because 

Table 1.  A Comparison of Key Features for Pattern Analysis Methods of CGM Data Using Traditional Statistical Methods, Functional 
Data Analysis, ML, and AI.

Methods
Traditional statistical 
pattern analysis

Functional data pattern 
analysis

Machine learning pattern 
analysis

Artificial intelligence pattern 
analysis

Reference Scheiner et al12 Gecili et al3 Jacobs et al5 and  
Metwally et al7

Shomali et al13

Approach Visual, summary  
statistics

Statistical, models entire 
time series

Predictive modeling using 
algorithms and glucose  
time series

Integrates machine learning, 
deep learning, and advanced 
algorithms

Data Used Aggregated, summary,  
or graphical

Each CGM trajectory  
is a random function

Large CGM data sets Massive, heterogeneous data 
sets (CGM, EHR, images, 
lifestyle, genomics)

Purpose To identify obvious  
trends/patterns

To quantify, compare, and 
model complex dynamics

To predict future glucose 
levels and classify states (eg, 
metabolic subphenotypes)

To predict risk, classify 
subtypes, and optimize 
therapy

Main Users Clinicians (practical use) Statisticians, researchers Data scientists, AI/ML digital 
health researchers

Researchers, health systems, 
digital therapeutics 
developers

Depth of 
Insight

Moderate (can identify 
trends and outliers)

High (treats glucose 
trajectories as 
mathematical functions 
rather than discrete 
measurements)

High (can uncover  
non-linear, complex,  
hidden patterns)

Very high (enables real-time 
adaptive interventions)

Examples AGP, time-in-range,  
mean, SD, GMI, GRI

Functional principal 
components,  
glucodensity

Clinically meaningful  
patterns from complex 
CGM data

AI-powered CGM or AI-
powered closed-loop 
insulin delivery, image-based 
complication detection

Limitations May miss subtle/intricate 
patterns

Requires statistical  
expertise, more complex

Requires a large data set  
to avoid overfitting beyond 
the used data set

Data privacy, bias, transparency, 
regulatory hurdles, and a need 
for extensive validation

Abbreviations: AGP, ambulatory glucose profile; AI, artificial intelligence; CGM, continuous glucose monitor; EHR, electronic health record; GMI, glucose 
management indicator; GRI, glycemia risk index; ML, machine learning; SD, standard deviation.
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it does not employ advanced statistical modeling of entire 
data trajectories as functions.3 Understanding patterns and 
amounts of glycemic variability, risk of hypoglycemia and 
hyperglycemia, and factors contributing to variability allows 
identification of periods of increased risk to facilitate proac-
tive management. Third, recognizing specific patterns in glu-
cose levels, rather than the standard overall percentage of 
time within the target range or even a composite metric, can 
allow clinicians to identify the underlying root cause and 
help them to adjust treatments based on identifying times of 
day when glucose levels are likely to be out of personal tar-
get ranges.23

Functional Data Analysis for 
Continuous Glucose Monitoring 
Pattern Recognition

Functional Data Analysis leverages the full time-series struc-
ture and is much more powerful than traditional statistical 
pattern analysis, especially when the goal is understanding 
the full temporal dynamics of glucose fluctuations rather 
than relying on isolated summary statistics or discrete time 
points. This approach treats CGM data as dynamic curves 
rather than discrete points, allowing for insights into glucose 
patterns.3 Five indications for Functional Data Analysis 
include (1) recognizing longitudinal or repeated measures 
for when CGM data is collected over multiple days or weeks 
to analyze the patterns and variability both within and 
between individuals over time, (2) phenotyping and sub-
group identification to identify distinct glycemic phenotypes 
or subgroups based on the shape and variability of glucose 
curves, which can help tailor interventions for patients at 
higher risk for complications, (3) assessing the impact of 
meals or interventions by reviewing the entire postprandial 
glucose trajectory, rather than just a single outcome, (4) qual-
ifying inter- and intra-day reproducibility of glucose patterns 
to test a CGM device’s precision, or (5) assessing glycemic 
variability of an individual as a risk factor for complications 
as part of a precision medicine approach. Thus, Functional 
Data Analysis compared to traditional statistics is better 
suited for capturing dynamic glucose patterns, handling 
complex data structures, and making time-dependent predic-
tions. Functional Data Analysis improves CGM prediction 
accuracy by transforming raw glucose traces into functional 
objects that preserve temporal dependencies, dynamic trends, 
and individual heterogeneity.

An example of Functional Data Analysis is the calculation 
of glucodensity, a statistical approach for pattern analysis of 
CGM data, where the entire distribution of glucose values 
over time for an individual is represented as a probability 
density function.20,24 Rather than focusing on summary sta-
tistics (such as mean glucose or time in range), with glu-
codensity the range intervals simultaneously shrink in width 
so that the new profile measures the proportion of time each 
patient spends at each specific glucose concentration rather 
than the amount of time spent within a wide range of 

glycemia. This method characterizes the full spectrum and 
variability of glucose concentrations, capturing both central 
tendency and fluctuations throughout the monitoring 
period.25 A set of data analyzed with glucodensities is pre-
sented in Figure 1.

A fundamentally different type of ML pattern recognition 
was used by Kovatchev and colleagues to add virtual CGM 
data to the Diabetes Control and Complications Trial (DCCT) 
results.26 In this study, the patterns of all 1400 participants in 
the DCCT over ten years using their episodic hemoglobin 
A1c readings and capillary glucose profiles were used to fill 
the gaps with CGM data derived from the previously identi-
fied CGM motifs.27 This study is an example of glucose pat-
tern recognition for a different purpose—to upsample the 
data density. An ML-based method for defining six distinct 
CGM fluctuation patterns of glycemic variability and the 
durations in these patterns was reported by Chan and col-
leagues. These patterns described variability better than tra-
ditional statistical methods.28

A modal day plot (also known as a 14-day glucose pattern 
report) is a visualization tool used with Functional Data 
Analysis, for longitudinal or repeated-measures data.29 
Figure 2 presents an example of this type of plot. Although 
this type of plot is not a traditional statistical summary, it is 
often used in conjunction both with traditional statistics to 
inform statistical modeling and for Functional Data Analysis 
to visualize functional curve-based data.30 A heat map can be 
used to present multiple stacked subjects’ CGM data across 
time using color gradients.30 This plot displays the average 
hourly glucose concentration over the study days corre-
sponding to that hour for that subject. With a heat map, one 
can observe differences, both between subjects and within 
subjects, as indicated by different colors in the heat map. A 
heat map is presented in Figure 3. This type of plot, however, 
does not demonstrate improving or worsening glycemic 
trends over time for the individual, because the plots demon-
strate only glycemic averages for a given time of day and are 
considered a bridging tool between traditional statistics and 
Functional Data Analysis techniques.31

Artificial Intelligence and Machine 
Learning for Continuous Glucose 
Monitoring Pattern Analysis

There has been recent excitement about applying AI to ana-
lyze and interpret CGM data. AI encompasses a breadth of 
methodologies, from ML models that can learn characteris-
tics and relationships in data to autonomous, generative sys-
tems that can independently analyze data. Several ML 
architectures, including recurrent neural networks, convolu-
tional neural networks, and transformers, are capable of 
learning temporal patterns in time series data, similar to 
Functional Data Analysis.

However, AI offers additional capabilities as compared to 
Functional Data Analysis. For example, AI models can pre-
dict clinical outcomes and associate CGM data with clinical 
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Figure 1.  Estimated and clustered glucodensities (left three panels) and the corresponding cumulative distribution functions (right 
three panels). Three clusters are identified: red (six subjects), with the highest average and most variable levels of blood glucose; blue 
(11 subjects), with the somewhat better glycemic control; and green (13 subjects), with the lowest average and least variable levels of 
blood glucose. Source: Reproduced from Cui et al20 under the CC-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).

Figure 2.  A modal day plot (also known as a 14-day glucose pattern report) of a set of CGM tracings. The dark line is the mean 
glucose at any given time. Source: This figure is courtesy of Amiad Fredman.

https://creativecommons.org/licenses/by/4.0/
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characteristics for tasks including risk stratification, sub-
group identification, and decision support.4 ML models can 
use either raw CGM data, extract information from algo-
rithms developed through mathematical modeling strategies, 
or leverage existing pattern recognition techniques, includ-
ing Functional Data Analysis, to gain clinical insights such 
as identifying clinically significant events (including 
impending hypoglycemia), assigning severity scores, and 
linking CGM characteristics to clinical phenotypes.32,33

AI also encompasses autonomous, intelligent systems that 
can be used to enhance the interaction between professionals 
and people with diabetes using CGM data. This includes 
interfaces that incorporate narrative summaries of data and 
intelligent insights personalized to an individual’s data.

AI models can also employ predictive algorithms for real-
time decision support. These models are used for short-term 
predictions, as part of closed-loop systems, and for risk strat-
ification. ML is primarily used to learn from CGM data to 
predict or classify glucose patterns, with a focus on enhanc-
ing risk stratification, subtype identification, root cause anal-
ysis, and prediction of patterns indicating adverse glycemic 
events.34 Input to ML algorithms for classification or predic-
tion purposes can be specified to include episodes of hypo-
glycemia occurring during particular conditions (eg, exercise 
or hemodialysis). The most advanced CGM interpretation 
systems today leverage both ML for prediction and AI for 

explanation, automation, and user interaction. As these two 
computational methods become combined, there will be the 
potential for optimizing diabetes management.

While predictive performance continues to improve, 
future clinical acceptance of AI-enhanced CGM tools will, of 
course, depend on their explainability and auditability. 
Clinicians need to be able to understand why an algorithm 
flagged a pattern or made a recommendation, especially in 
safety-critical scenarios such as insulin dosing. Explainable 
AI methods, such as attention mapping in deep learning 
models or SHAP (SHapley Additive exPlanations) values35  
(which are metrics used to explain the output of machine 
learning models by quantifying the contribution of each fea-
ture to a specific prediction) in ensemble approaches, can 
support transparency and trust in clinical decision-making. 
However, it will take significant experimentation to arrive at 
the best techniques for verification and validation, so moving 
from “ideation” to active trials and implementation in real-
world scenarios is crucial.

Another emerging challenge is that of model drift and 
decay—when changes in physiology, lifestyle, or medication 
regimens reduce model accuracy over time. Techniques such 
as automated drift detection, performance monitoring, and 
continuous learning pipelines will be needed to maintain 
robustness in real-world deployments. In addition, AI tools 
must account for edge-case populations who may fall outside 

Figure 3.  A heat map of a set of CGM tracings from 30 subjects. For any given subject, at any given time point in the 0- to 24-hour 
range, the average glucose level over study days corresponding to that time point for that subject is displayed. Source: Reproduced from 
Cui et al20 under the CC-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).

https://creativecommons.org/licenses/by/4.0/
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the dominant training distributions, such as those with dis-
rupted circadian rhythms, polypharmacy, or comorbidities. 
Like explainability and auditing, model drift and decay detec-
tion will take substantial experimentation. Putting AI into real-
world use is crucial so that reinforcement learning with human 
feedback (RLHF) can get started. Federated personalization 
and meta-learning approaches may allow models to rapidly 
adapt to these complex cases with minimal additional data.

Below we highlight examples of the use of AI and ML to 
analyze glycemic patterns, including: (1) Pattern Recognition 
and Event Classification Models, (2) Creation of Glucotypes, 
(3) ML to predict metabolic subphenotypes, (4) Large 
Language Models (LLMs) for CGM Data Summarization, 
(5) Examples of Commercial AI-Enhanced CGM Systems, 
(6) CGM foundation models, and (7) ML models to predict 
clinical outcomes from CGM.

Pattern Recognition and Event 
Classification Models

Pattern recognition and event classification models using an 
automated AI-driven system specifically designed to detect 
and classify clinically significant CGM patterns (CGM 
events) use algorithms to identify these events based on sig-
nal shape, temporal features, and glucose categories at the 
start and end of each event. Such a system has been validated 
against expert clinician assessments and demonstrated high 
accuracy in event detection and classification.13 Machine 
learning for assessing glycemic status and risk prediction has 
been used with random forest and support vector machine 
models to predict nocturnal hypoglycemia.36 Long short-
term memory (LSTM) networks and convolutional neural 
networks (CNNs) have also been applied to CGM time-series 
data for hypoglycemia prediction by leveraging the temporal 
dynamics of glucose fluctuations to accurately predict 
adverse events, guide clinical interventions,37 and identify 
underlying root causes.38

Glucotypes

AI algorithms using pattern analysis emphasizing CGM data 
glycemic variability have been used to identify subtypes of 
prediabetes and T2D. By defining three patterns of glycemic 
responses to standardized meals in people without known 
T2D, healthy people with no history of diabetes and normal 
static tests of glycemia (such as fasting plasma glucose, 
2-hour plasma glucose following an oral glucose tolerance 
test [OGTT], or hemoglobin A1c concentration) can be cate-
gorized into one of three patterns of glucose metabolism to 
create “glucotypes.” Individuals with aberrant glucose 
metabolism, including even true T2D, can be identified with 
this approach7,39,40. Other investigators have worked on iden-
tifying glucotypes of people with diabetes by clustering 
patients’ CGM data. Investigators have described CGM trac-
ings by the subgroup with which they best fall and have 

shown that this approach can delineate individuals with dis-
tinct statistical features and phenotypes.27,41-43 A classifica-
tion process for three glucotypes is presented in Figure 4.

Machine Learning-Based Analysis of 
Glucose Time Series for Predicting 
Metabolic Subphentoypes

The ML-based analysis of glucose time series for predicting 
metabolic subphenotypes has been used to directly predict 
metabolic subphenotypes, based on beta-cell function and 
degree of insulin resistance.7 Characterizing insulin resis-
tance and beta-cell function is of great interest, as it could 
allow for more targeted treatments. The gold-standard test 
for insulin resistance is the hyperinsulinemic euglycemic 
clamp,44 and for beta-cell function is the disposition index.45 
Both of these tests are performed in research facilities only, 
are expensive, and are time-consuming. In recent work, ML 
models have been trained on glucose time series from CGM 
following at-home OGTT to predict muscle insulin resis-
tance and beta-cell function, which were measured using 
gold-standard tests.7 This process is illustrated in Figure 5. 
At-home identification of metabolic subphenotypes using a 
CGM therefore has the potential to facilitate risk stratifica-
tion of individuals with early glucose dysregulation. It was 
shown that insulin resistance can be predicted at home with 
CGM and standardized meals,46 lifestyle factors,47 or via 
wearables and routine blood biomarkers.48

Large Language Models for  
Continuous Glucose Monitoring  
Data Summarization

Large language models can analyze raw CGM data, generate 
narrative summaries similar to clinician-written reports, and 
potentially assist in clinical decision making.49 Healey and 
colleagues evaluated the ability of an LLM, GPT-4, to com-
pute quantitative metrics specific to diabetes found in an 
AGP as defined by an international consensus report50 and an 
American Diabetes Association Standards of Care in 
Diabetes report.51 Qualitative summaries of the data in their 
AGP reports were derived from an article on interpreting an 
AGP report.52 They evaluated the accuracy, completeness, 
safety, and suitability of qualitative descriptions produced by 
GPT-4, as assessed by two clinician graders. The LLM pro-
vided qualitative descriptions of glycemic patterns, hypogly-
cemia, and hyperglycemia events. An evaluation procedure 
for a single case of using GPT-4 to summarize an AGP is 
presented in Figure 6. The LLM-generated analyses demon-
strated high accuracy and safety, as confirmed by the clini-
cians. However, the study also identified occasional errors in 
the clinical conclusions produced by the LLMs, which could 
potentially result in inappropriate treatment decisions.53 
While the findings underscore the promise of AI-assisted 
CGM pattern analysis in enhancing clinical care and 
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clinician efficiency, they also highlight the critical need for 
further research to refine LLM prompts and integrate human 
feedback into model training, ensuring greater reliability and 
clinical applicability.54

Commercial Artificial  
Intelligence-Enhanced Continuous 
Glucose Monitoring Systems

Stelo by Dexcom, the first over-the-counter glucose biosen-
sor cleared by the United States Food and Drug Administration, 
uses generative AI-enabled technology to produce weekly 
narrative insights in contextually relevant text. The Stelo app 
provides personalized tips, recommendations, and education 
related to diet, exercise, and sleep, based on not only glucose 
data but also meal logs and other wearable data.55 A commer-
cial AI-powered CGM system has also been developed by 
Roche Diabetes Care. This real-time CGM Diabetes Tracker 

provides actionable alerts by incorporating AI algorithms to 
predict glucose highs and lows as well as inform the user of 
their risk of developing hypoglycemia overnight with their 
Accu-Chek SmartGuide and SmartGuide Predict app.56 The 
app is powered by three ML models, including a 120-minute 
glucose forecast, a 30-minute low glucose detection, and a 
night-time low glucose prediction for bedtime interventions.57 
This product is available in some European countries but not 
in the United States. Other CGMs employ AI for automation 
and prediction but do not provide user-facing, generative 
AI-driven insights at this time.

Continuous Glucose Monitoring 
Foundation Models

A foundation model of CGM structures for pattern analysis 
refers to a large, pretrained ML model that learns generaliz-
able representations from CGM data for diverse downstream 

Figure 4.  (a-c) Segregation of the 2.5-hour windows into the three classes of glycemic signatures derived from spectral clustering. The 
lines in each panel show an example of the glycemic signatures in each class. This separation of windows explains approximately 73% 
of the variance. (d) One day of CGM data for three separate individuals. Color indicates classification of glycemic signatures. Note that 
since overlapping windows were used for clustering and classification, some periods of the day have multiple classifications. (e) Heat 
map showing the fraction of time individuals spent in each of the glycemic classes. Rows represent the unique individuals in the cohort, 
while columns represent each of the glycemic signature classes shown in (a-c). Color of the tiles corresponds to the fraction of time 
spent in each class, with 1 being 100% of the time. There were 238 windows per participant (S3 Data). Rows of individuals are arranged 
according to hierarchical clustering. Source: Reproduced from Hall et al39 under the CC-BY-4.0 license (https://creativecommons.org/
licenses/by/4.0/).
Abbreviation: CGM, continuous glucose monitoring.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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predictive and analytic tasks.58 Foundation models capture 
the underlying dynamics and patterns in the data and then 
allow building applications, such as diagnosis or risk assess-
ment. Lu and colleagues recently published a CGM founda-
tion model based on a deep learning transformer architecture, 
that was pretrained on vast amounts of CGM data using self-
supervised learning tasks.59  Gluformer is another example 
of a foundation model of CGM data.60 However, this model 
is trained primarily on data in the non-diabetic healthy state 
and is therefore useful only for detecting deviations from a 
healthy state, i.e., it can detect an increased risk of diabetes.

Machine Learning to Predict  
Clinical Outcomes from  
Continuous Glucose Monitoring

There is emerging interest in using ML to predict clinical 
events and outcomes from CGM data. These approaches 
have been enabled by comprehensive datasets that contain 
CGM data along with clinical outcomes.  This predictive 
approach was used in the Glucose Levels Across Maternity 
(GLAM) study to link CGM data with risks of maternal and 
select perinatal complications.61 Medication adherence has 

Figure 5.  Study design of the validation cohort and at-home OGTT test via CGM to predict muscle IR and β-cell function. Participants 
underwent gold-standard testing at the research unit for insulin resistance (SSPG test) and B-cell function (16-point OGTT with 
C-peptide deconvolution adjusted for SSPG and expressed as DI), as well as two OGTTs administered at home under standardized 
conditions during which glucose patterns were captured by a CGM within a single 10-day session (DexCom G6 pro). Source: 
Reproduced from Metwally et al6 under the CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).
Abbreviations: CGM, continuous glucose monitor; CTRU, clinical translational research unit; DI, disposition index; IR, insulin resistance; IS, insulin 
sensitivity; ML, machine learning; N, number of subjects; SSPG, steady-state plasma glucose.

Figure 6.  Evaluation procedure for a single case of using GPT-4 to summarize an AGP. Source: Figure reproduced from Healey et al48 
under the CC-BY-4.0 license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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been determined to be feasible through ML-based pattern anal-
ysis of simulated CGM data.62 Subtyping patients with T2DM 
using CGM data may help identify high-risk patients for micro-
vascular complications,63 including diabetic retinopathy42,64 
and albuminuria.42 However, these new approaches are at early 
stages of implementation and require further studies to deter-
mine their feasibility and acceptability for use by profession-
als and people with diabetes. In addition, the potential 
benefits related to diabetes prevention and reducing the risk 
of the serious complications associated with diabetes remain 
to be determined.

Conclusions

As Functional Data Analysis-, AI- and ML-enabled applica-
tions for CGM for pattern analysis become more available 
and more powerful, we expect to see greater insights into the 
users’ metabolism and behavior, which will assist clinicians 
to make more targeted treatment decisions.65 For example, 
special consideration must be given to populations with 
irregular circadian rhythms (eg, shift workers), polyphar-
macy, or comorbidities that alter metabolic rhythms. These 
“edge-case” users may not be well-represented in training 
data sets, and their glucose patterns may challenge standard 
algorithms.

As primary care physicians now provide the majority of 
diabetes care, they are likely to be significant beneficiaries 
of tools that can translate CGM pattern insights into natural 
language interpretations. Similarly, and from the perspec-
tive of people living with diabetes, personalized insights 
from more detailed explanations of CGM profiles are very 
likely to result in improvements in their self-management. 
Furthermore, for all clinicians, the burden of identifying com-
plex patterns and selecting treatments based on these patterns 
could be reduced by the same pattern analysis 2.0 tools by 
adding decision support. Researchers will now need to gen-
erate practical clinical advice and solutions from their pow-
erful Functional Data Analysis, AI, and ML tools to enable 
clinicians to move from traditional CGM Pattern Analysis 
1.0 to what we are calling CGM Data Analysis 2.0. For 
example, LLMs could also convert pattern detection into 
natural language descriptions of recommended treatments to 
be reviewed and potentially accepted by clinicians as text 
for clinical documents, which could significantly reduce 
their workload.

To bring CGM Data Analysis 2.0 to mainstream diabetes 
care, either CGM manufacturers or software developers 
will be expected to generate new types of reports. These 
reports will supplement or replace current reports that are 
based on summary statistics that were conceived of before 
artificial intelligence analysis became available to analyze 
patterns. Furthermore, as new analysis technology becomes 
widely deployed, new consensus guidelines and clinician 
training will be needed to bring these analyses into the 
workflow.

Clinicians will soon routinely receive new non-traditional 
forms of CGM analyses because traditional metrics (CGM 
Pattern Analysis 1.0) will gradually be replaced by Functional 
Data Analysis-, AI-, and ML-based reports. These emerging 
methods for analysis of CGM patterns (CGM Pattern 
Analysis 2.0) will identify patterns, define the quality of gly-
cemia, and enable truly personalized treatments.

Abbreviations

AGP, ambulatory glucose profile; AI, artificial intelligence; AID, 
automated insulin delivery; CGM, continuous glucose monitoring; 
CNNs, convolutional neural networks; CTRU, clinical translational 
research unit; DCCT, Diabetes Control and Complications Trial; 
DI, Disposition Index; GLAM, Glucose Levels Across Maternity; 
HBGI, high blood glucose index; IR, insulin resistance; IS, insulin 
sensitivity; LBGI, low blood glucose index; LSTM, long short-term 
memory; ML, machine learning; N, number of subjects; OGTT, 
oral glucose tolerance test; RLHF, reinforcement learning with 
human feedback; SHAP, SHapley Additive exPlanations; SSPG, 
steady-state plasma glucose; T2D, type 2 diabetes.

Declaration of Conflicting Interests

The author(s) declared the following potential conflicts of interest 
with respect to the research, authorship, and/or publication of this 
article: D.C.K. is a consultant for Afon, Atropos Health, Embecta, 
GlucoTrack, Lifecare, Novo, SynchNeuro, and Thirdwayv. R.M.B. 
has received research support, has acted as a consultant, or has been 
on the scientific advisory board for Abbott Diabetes Care, Ascensia, 
CeQur, DexCom, Eli Lilly, Embecta, Hygieia, Insulet, Medscape, 
Medtronic, Novo Nordisk, Onduo, Roche Diabetes Care, Tandem 
Diabetes Care, Sanofi, United Healthcare, Vertex Pharmaceuticals, 
and Zealand Pharma. E.C. has served on the scientific advisory 
board of Novo Nordisk, Eli Lilly, MannKind, Arecor, Portal 
Insulin, Provention Bio, Tandem, Sanofi, and Ypsomed. M.A.C. 
receives research support from DexCom and Abbott Diabetes Care 
and consulting fees from Glooko as Chief Medical Officer. D.E. is 
a co-founder and shareholder of OneTwo Analytics AB, Sweden. 
J.E. receives federal funding from FDA, NIMHD, and NCATS and 
is a consultant for Sanofi. D.K.’s institution has received research 
support from Abbott Diabetes Care. B.K. reports receiving research 
support from DexCom, Inc and Tandem Diabetes Care handled by 
the University of Virginia and patent royalties from DexCom, Inc 
handled by the University of Virginia’s Licensing and Ventures 
Group. D.M.M. has had research support from the NIH, NSF, 
Breakthrough T1D, and the Helmsley Charitable Trust and his insti-
tution has had research support from DexCom. Dr D.M.M. has con-
sulted for Abbott, Sanofi, Eli Lilly, Medtronic, Biospex, Kriya, and 
Enable Biosciences. J.K.M. is a member of advisory boards of 
Abbott Diabetes Care, Becton-Dickinson, Biomea Fusion, 
DexCom, Eli Lilly, Embecta, Medtronic, myLife, Novo Nordisk 
A/S, Pharmasens, Roche Diabetes Care, Sanofi-Aventis, Tandem, 
and Viatris and received speaker honoraria from A. Menarini 
Diagnostics, Abbott Diabetes Care, DexCom, Eli Lilly, Medtrust, 
MSD, Novo Nordisk A/S, Roche Diabetes Care, Sanofi, Viatris, 
and Ypsomed. She is a shareholder of decide Clinical Software 
GmbH and elyte Diagnostics and serves as CMO of elyte 
Diagnostics. N.M. has nothing to disclose. A.A.M. is currently an 
employee of Google. S.N.S. has nothing to disclose. M.P.S. is a 



Klonoff et al	 11

co-founder and a member of the scientific advisory board of 
Personalis, Qbio, January AI, SensOmics, Protos, and Mirvie. He is 
on the scientific advisory board of Danaher, GenapSys, and Jupiter. 
B.S. has nothing to disclose. G.U. has nothing to disclose. M.S. has 
nothing to disclose. A.S. has nothing to disclose. A.T.A. has noth-
ing to disclose. C.N.H. has nothing to disclose.

E.H. is supported by T32HD040128 from the NICHD/NIH.

Funding

The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

ORCID iDs

David C. Klonoff  https://orcid.org/0000-0001-6394-6862

Richard M. Bergenstal  https://orcid.org/0000-0002-9050-5584

Eda Cengiz  https://orcid.org/0000-0001-7992-9506

Mark A. Clements  https://orcid.org/0000-0002-2368-0331

Daniel Espes  https://orcid.org/0000-0001-8843-7941

Juan Espinoza  https://orcid.org/0000-0003-0513-588X

David Kerr  https://orcid.org/0000-0003-1335-1857

Boris Kovatchev  https://orcid.org/0000-0003-0495-3901

David M. Maahs  https://orcid.org/0000-0002-4602-7909

Julia K. Mader  https://orcid.org/0000-0001-7854-4233

Nestoras Mathioudakis  https://orcid.org/0000-0002-0210- 
655X

Ahmed A. Metwally  https://orcid.org/0000-0002-0155-7412

Shahid N. Shah  https://orcid.org/0000-0001-8481-6493

Bin Sheng  https://orcid.org/0000-0001-8678-2784

Michael P. Snyder  https://orcid.org/0000-0003-0784-7987

Guillermo Umpierrez  https://orcid.org/0000-0002-3252-5026

Mandy M. Shao  https://orcid.org/0009-0004-9550-9965

Agatha F. Scheideman  https://orcid.org/0009-0008-4211-4934

Alessandra T. Ayers  https://orcid.org/0009-0000-3054-3207

Cindy N. Ho  https://orcid.org/0009-0008-3067-1004

Elizabeth Healey  https://orcid.org/0000-0002-7307-8429

References

	 1.	 Shah VN, Kerr D. What is a normal glucose? Lancet Diabetes 
Endocrinol. 2025;13:172-174.

	 2.	 Gecili E, Huang R, Khoury JC, et al. Functional data analysis 
and prediction tools for continuous glucose-monitoring studies. 
J Clin Transl Sci. 2020;5(1):e51. doi:10.1017/cts.2020.545.

	 3.	 Medanki S, Dommati N, Bodapati HH, et al. Artificial intel-
ligence powered glucose monitoring and controlling sys-
tem: pumping module. World J Exp Med. 2024;14(1):87916. 
doi:10.5493/wjem.v14.i1.87916.

	 4.	 Jacobs PG, Herrero P, Facchinetti A, et al. Artificial intelligence 
and machine learning for improving glycemic control in diabe-
tes: best practices, pitfalls, and opportunities. IEEE Rev Biomed 
Eng. 2024;17:19-41. doi:10.1109/RBME.2023.3331297.

	 5.	 Bergenstal RM, Ahmann AJ, Bailey T, et al. Recommendations 
for standardizing glucose reporting and analysis to optimize 

clinical decision making in diabetes: the ambulatory glu-
cose profile. J Diabetes Sci Technol. 2013;7(2):562-578. 
doi:10.1177/193229681300700234.

	 6.	 Kapoor Y, Hasija Y. Continuous glucose monitoring using 
machine learning models and IoT device data: a meta-analysis. 
Technol Health Care. 2025;33(1):577-591. doi:10.3233/THC-
241403.

	 7.	 Metwally AA, Perelman D, Park H, et al. Prediction of meta-
bolic subphenotypes of type 2 diabetes via continuous glucose 
monitoring and machine learning [published online ahead 
of print December 23, 2024]. Nat Biomed Eng. doi:10.1038/
s41551-024-01311-6.

	 8.	 Eghbali-Zarch M, Masoud S. Application of machine learn-
ing in affordable and accessible insulin management for type 
1 and 2 diabetes: a comprehensive review. Artif Intell Med. 
2024;151:102868. doi:10.1016/j.artmed.2024.102868.

	 9.	 Mittal R, Weiss MB, Rendon A, Shafazand S, Lemos JRN, 
Hirani K. Harnessing machine learning, a subset of artificial 
intelligence, for early detection and diagnosis of type 1 dia-
betes: a systematic review. Int J Mol Sci. 2025;26(9):3935. 
doi:10.3390/ijms26093935.

	10.	 Kovatchev B, Castillo A, Pryor E, et  al. Neural-net artificial 
pancreas: a randomized crossover trial of a first-in-class auto-
mated insulin delivery algorithm. Diabetes Technol Ther. 
2024;26(6):375-382. doi:10.1089/dia.2023.0469.

	11.	 Swensen E. Adding AI to artificial pancreas enhances effi-
ciency, study finds. UVA health newsroom. May 2, 2024. 
https://newsroom.uvahealth.com/2024/05/02/adding-ai-arti 
ficial-pancreas-enhances-efficiency-study-finds/. Accessed 
April 30, 2025.

	12.	 Scheiner G. CGM retrospective data analysis. Diabetes 
Technol Ther. 2016;18(suppl 2):S214-S222. doi:10.1089/
dia.2015.0281.

	13.	 Shomali M, Liu S, Kumbara A, Iyer A, Gao GG. The devel-
opment and potential applications of an automated method 
for detecting and classifying continuous glucose monitor-
ing patterns. J Diabetes Sci Technol. 2024;19(3):658-665. 
doi:10.1177/19322968241232378.

	14.	 Klonoff DC, Wang J, Rodbard D, et  al. A glyce-
mia risk index (GRI) of hypoglycemia and hypergly-
cemia for continuous glucose monitoring validated by 
clinician ratings. J Diabetes Sci Technol. 2023;17(5):1226-
1242. doi:10.1177/19322968221085273.

	15.	 Kovatchev BP, Cox DJ, Gonder-Frederick L, Clarke WL. 
Methods for quantifying self-monitoring blood glucose pro-
files exemplified by an examination of blood glucose patterns 
in patients with type 1 and type 2 diabetes. Diabetes Technol 
Ther. 2002;4(3):295-303. doi:10.1089/152091502760098438.

	16.	 Kovatchev BP, Cox DJ, Gonder-Frederick LA, Young-Hyman 
D, Schlundt D, Clarke W. Assessment of risk for severe hypo-
glycemia among adults with IDDM: validation of the low 
blood glucose index. Diabetes Care. 1998;21(11):1870-1875. 
doi:10.2337/diacare.21.11.1870.

	17.	 Nguyen M, Han J, Spanakis EK, Kovatchev BP, Klonoff 
DC. A review of continuous glucose monitoring-based com-
posite metrics for glycemic control. Diabetes Technol Ther. 
2020;22(8):613-622. doi:10.1089/dia.2019.0434.

	18.	 Matabuena M, Pazos-Couselo M, Alonso-Sampedro M, 
Fernández-Merino C, González-Quintela A, Gude F. Repro

https://orcid.org/0000-0001-6394-6862
https://orcid.org/0000-0002-9050-5584
https://orcid.org/0000-0001-7992-9506
https://orcid.org/0000-0002-2368-0331
https://orcid.org/0000-0001-8843-7941
https://orcid.org/0000-0003-0513-588X
https://orcid.org/0000-0003-1335-1857
https://orcid.org/0000-0003-0495-3901
https://orcid.org/0000-0002-4602-7909
https://orcid.org/0000-0001-7854-4233
https://orcid.org/0000-0002-0210-655X
https://orcid.org/0000-0002-0210-655X
https://orcid.org/0000-0002-0155-7412
https://orcid.org/0000-0001-8481-6493
https://orcid.org/0000-0001-8678-2784
https://orcid.org/0000-0003-0784-7987
https://orcid.org/0000-0002-3252-5026
https://orcid.org/0009-0004-9550-9965
https://orcid.org/0009-0008-4211-4934
https://orcid.org/0009-0000-3054-3207
https://orcid.org/0009-0008-3067-1004
https://orcid.org/0000-0002-7307-8429
https://newsroom.uvahealth.com/2024/05/02/adding-ai-artificial-pancreas-enhances-efficiency-study-finds/
https://newsroom.uvahealth.com/2024/05/02/adding-ai-artificial-pancreas-enhances-efficiency-study-finds/


12	 Journal of Diabetes Science and Technology 00(0)

ducibility of continuous glucose monitoring results under 
real-life conditions in an adult population: a functional data 
analysis. Sci Rep. 2023;13(1):13987. doi:10.1038/s41598-023-
40949-1.

	19.	 Barua S, Sabharwal A, Glantz N, et al. The northeast glucose 
drift: stratification of post-breakfast dysglycemia among pre-
dominantly Hispanic/Latino adults at-risk or with type 2 dia-
betes. EClinicalMedicine. 2022;43:101241. doi:10.1016/j.
eclinm.2021.101241.

	20.	 Cui EH, Goldfine AB, Quinlan M, James DA, Sverdlov O. 
Investigating the value of glucodensity analysis of continu-
ous glucose monitoring data in type 1 diabetes: an explor-
atory analysis. Front Clin Diabetes Healthc. 2023;4:1244613. 
doi:10.3389/fcdhc.2023.1244613.

	21.	 Cobry E, McFann K, Messer L, et  al. Timing of meal insu-
lin boluses to achieve optimal postprandial glycemic con-
trol in patients with type 1 diabetes. Diabetes Technol Ther. 
2010;12(3):173-177. doi:10.1089/dia.2009.0112.

	22.	 How to use LibreView with the freestyle Libre CGM. Beyond 
type 1. https://beyondtype1.org/how-to-use-libreview-with-
the-freestyle-libre-cgm/. Accessed April 30, 2025.

	23.	 Choudhary P, Genovese S, Reach G. Blood glucose pat-
tern management in diabetes: creating order from disor-
der. J Diabetes Sci Technol. 2013;7(6):1575-1584. doi:10 
.1177/193229681300700618.

	24.	 Matabuena M, Petersen A, Vidal JC, Gude F. Glucodensities: 
a new representation of glucose profiles using distributional 
data analysis. Stat Methods Med Res. 2021;30(6):1445-1464. 
doi:10.1177/0962280221998064.

	25.	 Matabuena M, Ghosal R, Aguilar JE, et  al. Glucodensity 
functional profiles outperform traditional continuous glucose 
monitoring metrics [published online ahead of print October 1, 
2024]. arXiv. doi:10.48550/arXiv.2410.00912.

	26.	 Kovatchev BP, Lobo B, Fabris C, et  al. The virtual DCCT: 
adding continuous glucose monitoring to a landmark clini-
cal trial for prediction of microvascular complications. 
Diabetes Technol Ther. 2025;27(3):209-216. doi:10.1089/
dia.2024.0404.

	27.	 Kovatchev B, Lobo B. Clinically similar clusters of daily 
continuous glucose monitoring profiles: tracking the progres-
sion of glycemic control over time. Diabetes Technol Ther. 
2023;25(8):519-528. doi:10.1089/dia.2023.0117.

	28.	 Chan NB, Li W, Aung T, Bazuaye E, Montero RM. Machine 
learning-based time in patterns for blood glucose fluctuation 
pattern recognition in type 1 diabetes management: devel-
opment and validation study. JMIR AI. 2023;2:e45450. 
doi:10.2196/45450.

	29.	 Satuluri VKRR, Ponnusamy V. Enhancement of ambulatory 
glucose profile for decision assistance and treatment adjust-
ments. Diagnostics (Basel). 2024;14(4):436. doi:10.3390/diag-
nostics14040436. 

	30.	 Swihart BJ, Caffo B, James BD, Strand M, Schwartz BS, 
Punjabi NM. Lasagna plots: a saucy alternative to spaghetti 
plots. Epidemiology. 2010;21(5):621-625. doi:10.1097/EDE. 
0b013e3181e5b06a.

	31.	 Piersanti A, Giurato F, Göbl C, Burattini L, Tura A, Morettini 
M. Software packages and tools for the analysis of con-
tinuous glucose monitoring data. Diabetes Technol Ther. 
2023;25(1):69-85. doi:10.1089/dia.2022.0237.

	32.	 Giammarino F, Senanayake R, Prahalad P, Maahs DM, 
Scheinker D. A machine learning model for week-ahead hypo-
glycemia prediction from continuous glucose monitoring data 
[published online ahead of print March 6, 2024]. J Diabetes Sci 
Technol. doi:10.1177/19322968241236208.

	33.	 van den Brink WJ, van den Broek TJ, Wopereis S, Difrancesco 
S, van der Horst FAL, de Hoogh IM. Feasibility of digital phe-
notyping based on continuous glucose monitoring to support 
personalized lifestyle medicine in type 2 diabetes. Maturitas. 
2025;194:108188. doi:10.1016/j.maturitas.2024.108188.

	34.	 Cichosz SL, Olesen SS, Jensen MH. Explainable machine-
learning models to predict weekly risk of hyperglycemia, 
hypoglycemia, and glycemic variability in patients with type 
1 diabetes based on continuous glucose monitoring [published 
online ahead of print October 8, 2024]. J Diabetes Sci Technol. 
doi:10.1177/19322968241286907.

	35.	 Lundberg SM, Lee S-I. A unified approach to interpreting model 
predictions. Proceedings of the 31st International Conference 
on Neural Information Processing Systems (NIPS’17). Red 
Hook, NY, USA: Curran Associates Inc.; 2017: 4768-4777.

	36.	 Afentakis I, Unsworth R, Herrero P, Oliver N, Reddy M, 
Georgiou P. Development and validation of binary classi-
fiers to predict nocturnal hypoglycemia in adults with type 
1 diabetes. J Diabetes Sci Technol. 2025;19(1):153-160. 
doi:10.1177/19322968231185796.

	37.	 Shao J, Pan Y, Kou WB, et al. Generalization of a deep learn-
ing model for continuous glucose monitoring-based hypogly-
cemia prediction: algorithm development and validation study. 
JMIR Med Inform. 2024;12:e56909. doi:10.2196/56909.

	38.	 Cederblad L, Eklund G, Vedal A, et al. Classification of hypo-
glycemic events in type 1 diabetes using machine learning 
algorithms. Diabetes Ther. 2023;14(6):953-965. doi:10.1007/
s13300-023-01403-7.

	39.	 Hall H, Perelman D, Breschi A, et  al. Glucotypes reveal 
new patterns of glucose dysregulation. PLoS Biol. 
2018;16(7):e2005143. doi:10.1371/journal.pbio.2005143.

	40.	 Metwally A, Mehta P, Snyder MP. Predicting glucotypes 
in prediabetes via wearables and artificial intelligence. In: 
Klonoff DC, Kerr D, Espinoza JC, eds. Diabetes Digital 
Health, Telehealth, and Artificial Intelligence. Cambridge, 
MA: Academic Press, 2024:287-301.

	41.	 Tao R, Yu X, Lu J, et  al. Multilevel clustering approach 
driven by continuous glucose monitoring data for further clas-
sification of type 2 diabetes. BMJ Open Diabetes Res Care. 
2021;9(1):e001869. doi:10.1136/bmjdrc-2020-001869.

	42.	 Shao X, Lu J, Tao R, et al. Clinically relevant stratification of 
patients with type 2 diabetes by using continuous glucose mon-
itoring data. Diabetes Obes Metab. 2024;26(6):2082-2091. 
doi:10.1111/dom.15512.

	43.	 Mao Y, Tan KXQ, Seng A, Wong P, Toh SA, Cook AR. 
Stratification of patients with diabetes using continuous glu-
cose monitoring profiles and machine learning. Health Data 
Sci. 2022;2022:9892340. doi:10.34133/2022/9892340.

	44.	 DeFronzo RA, Tobin JD, Andres R. Glucose clamp tech-
nique: a method for quantifying insulin secretion and resis-
tance. Am J Physiol. 1979;237(3):E214-E223. doi:10.1152/
ajpendo.1979.237.3.E214.

	45.	 Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation 
of factors controlling glucose tolerance in man: measurement 
of insulin sensitivity and beta-cell glucose sensitivity from the 

https://beyondtype1.org/how-to-use-libreview-with-the-freestyle-libre-cgm/
https://beyondtype1.org/how-to-use-libreview-with-the-freestyle-libre-cgm/


Klonoff et al	 13

response to intravenous glucose. J Clin Invest. 1981;68(6):1456-
1467. doi:10.1172/jci110398.

	46.	 Wu Y,  Ehlert B, Metwally AA,  et al. Individual variations 
in glycemic responses to carbohydrates and underlying meta-
bolic physiology. Nat Med. 2025:1-12.

	47.	 Park H, Metwally AA, Delfarah A, et al. High-resolution life-
style profiling and metabolic subphenotypes of type 2 diabe-
tes. NPJ Digit Med. 2025;8(1):352.

	48.	 Metwally AA, Heydari AA, McDuff D, et al. Insulin resis-
tance prediction from wearables and routine blood biomark-
ers. arXiv preprint arXiv:2505.03784. 2025.

	49.	 Ho CN, Tian T, Ayers AT, et al. Qualitative metrics from the 
biomedical literature for evaluating large language models 
in clinical decision-making: a narrative review. BMC Med 
Inform Decis Mak. 2024;24(1):357. doi:10.1186/s12911-024-
02757-z.

	50.	 Battelino T, Danne T, Bergenstal RM, et  al. Clinical targets 
for continuous glucose monitoring data interpretation: recom-
mendations from the international consensus on time in range. 
Diabetes Care. 2019;42(8):1593-1603. doi:10.2337/dci19-
0028.

	51.	 ElSayed NA, Aleppo G, Aroda VR, et  al. 6. Glycemic tar-
gets: standards of care in diabetes-2023. Diabetes Care. 
2023;46(suppl 1):S97-S110. doi:10.2337/dc23-S006.

	52.	 Czupryniak L, Dzida G, Fichna P, et  al. Ambulatory glu-
cose profile (AGP) report in daily care of patients with dia-
betes: practical tips and recommendations. Diabetes Ther. 
2022;13(4):811-821. doi:10.1007/s13300-022-01229-9.

	53.	 Healey E, Tan ALM, Flint KL, Ruiz JL, Kohane I. A case study 
on using a large language model to analyze continuous glu-
cose monitoring data. Sci Rep. 2025;15(1):1143. doi:10.1038/
s41598-024-84003-0.

	54.	 Yu P, Xu H, Hu X, Deng C. Leveraging generative AI and 
large language models: a comprehensive roadmap for health-
care integration. Healthcare (Basel). 2023;11(20):2776. doi:10 
.3390/healthcare11202776.

	55.	 Dexcom launches the first generative AI, platform in glucose 
biosensing. https://investors.dexcom.com/news/news-details/ 
2024/Dexcom-Launches-the-First-Generative-AI-Platform-in-
Glucose-Biosensing/default.aspx. Accessed April 30, 2025.

	56.	 Glatzer T, Ehrmann D, Gehr B, et  al. Clinical usage and 
potential benefits of a continuous glucose monitoring pre-
dict app. J Diabetes Sci Technol. 2024;18(5):1009-1013. 
doi:10.1177/19322968241268353.

	57.	 Herrero P, Andorrà M, Babion N, et al. Enhancing the capa-
bilities of continuous glucose monitoring with a predic-
tive app. J Diabetes Sci Technol. 2024;18(5):1014-1026. 
doi:10.1177/19322968241267818.

	58.	 Foundation models for materials discovery current state future 
directions. npj computational materials. https://www.nature.
com/articles/s41524-025-01538-0. Accessed April 30, 2025.

	59.	 Lu Y, Liu D, Liang Z, et al. A pretrained transformer model 
for decoding individual glucose dynamics from continuous 
glucose monitoring data. Natl Sci Rev. 2025;12(5):nwaf039. 
doi:10.1093/nsr/nwaf039.

	60.	 Lutsker G, Sapir G, Shilo S, et al. From glucose patterns to 
health outcomes: a generalizable foundation model for con-
tinuous glucose monitor data analysis. [published online 
ahead of print January 7, 2025]. arXiv. doi:10.48550/
arXiv.2408.11876.

	61.	 Li Z, Beck R, Durnwald C, et  al. Continuous glucose moni-
toring prediction of gestational diabetes mellitus and perinatal 
complications. Diabetes Technol Ther. 2024;26(11):787-796. 
doi:10.1089/dia.2024.0080.

	62.	 Thyde DN, Mohebbi A, Bengtsson H, Jensen ML, Mørup M. 
Machine learning-based adherence detection of type 2 diabetes 
patients on once-daily basal insulin injections. J Diabetes Sci 
Technol. 2021;15(1):98-108. doi:10.1177/1932296820912411.

	63.	 Jian Y, Pasquier M, Sagahyroon A, Aloul F. A machine learn-
ing approach to predicting diabetes complications. Healthcare 
(Basel). 2021;9(12):1712. doi:10.3390/healthcare9121712.

	64.	 Montaser E, Shah VN. Prediction of incident diabetic reti-
nopathy in adults with type 1 diabetes using machine learning  
approach: an exploratory study [published online ahead 
of print October 28, 2024]. J Diabetes Sci Technol. doi:10 
.1177/19322968241292369.

	65.	 Sure TAR. Enhancing continuous glucose monitoring: the 
role of AI in supporting AGP interpretation [published online 
ahead of print April 28, 2025]. J Diabetes Sci Technol. 
doi:10.1177/19322968251337479.

https://investors.dexcom.com/news/news-details/2024/Dexcom-Launches-the-First-Generative-AI-Platform-in-Glucose-Biosensing/default.aspx
https://investors.dexcom.com/news/news-details/2024/Dexcom-Launches-the-First-Generative-AI-Platform-in-Glucose-Biosensing/default.aspx
https://investors.dexcom.com/news/news-details/2024/Dexcom-Launches-the-First-Generative-AI-Platform-in-Glucose-Biosensing/default.aspx
https://www.nature.com/articles/s41524-025-01538-0
https://www.nature.com/articles/s41524-025-01538-0

